

Fraunhofer

TESTED® DEVICE

Schneider Electric Autom. GmbH Lexium TAC41SBC0500A1BS Report No. SC 1506-768

Statement of Qualification

Particle Emission

Statement of Qualification

Customer Schneider Electric Automation GmbH

Breslauer Straße 7 77933 Lahr Germany

Component tested

Category: Automation Components

Subcategory: Linear Units

Product name: Lexium TAC41SBC0500A1BS

(manufacturing date: 11/5/2015; serial number: 2503001699;

stroke: 500 mm)

Random sampling of particle emissions (airborne) at representative sites

Standards/Guidelines:

Test devices:

VDI 2083-9.1; ISO 14644-1

The norms stated refer to the relevant editions applicable at the time of $% \left\{ 1\right\} =\left\{ 1\right\} =$

the tests

Optical particle counter:

LasAir II 110 and LasAir III 110 with measuring ranges $\geq 0.1\,\mu\text{m}, \geq 0.2\,\mu\text{m},$

 $\geq 0.3 \, \mu \text{m}$, $\geq 0.5 \, \mu \text{m}$, $\geq 1.0 \, \mu \text{m}$ and $\geq 5.0 \, \mu \text{m}$

Test environment parameters: • Cleanroom Air Cleanliness Class (according to ISO 14644-1):.......... ISO 1

• Airflow velocity:......0.45 m/s

Airflow pattern:....vertical laminar flow

Test procedure parameters:

Installation position: horizontal
Test load: 15 kg
Travel length: s = 480 mm
Parameter Set 1: v₁ = 0.05 m/s; a₁ = 2.0 m/s²

• Parameter Set 2:.... $v_2 = 0.1 \,\text{m/s}$; $a_2 = 2.0 \,\text{m/s}^2$

• Parameter Set 3:..... $v_3 = 0.2 \,\text{m/s}$; $a_3 = 2.0 \,\text{m/s}^2$

Test result / Classification

When operated under the specified test conditions, the Lexium TAC41SBC0500A1BS is suitable for use in cleanrooms fulfilling the specifications of the following Air Cleanliness Classes according to ISO 14644-1:

Parameter	Air Cleanliness Class
$v_1 = 0.05 \text{m/s}; a_1 = 2.0 \text{m/s}^2$	5
$v_2 = 0.1 \text{m/s}; a_2 = 2.0 \text{m/s}^2$	5
$v_3 = 0.2 \text{m/s}; a_3 = 2.0 \text{m/s}^2$	6
Overall result	6

The measuring devices used for the qualification tests are calibrated at regular intervals; their results can be traced back to national and international standards. In cases where no national standards exist, the test procedure implemented complies with the technical regulations and norms applicable at the time of the test. The relevant documentation can be viewed on request at any time.

For further information about the test environment and parameters, please refer to the Fraunhofer IPA test report.

Fraunhofer Institute for Manufacturing Engineering and Automation IPA

Department of Ultraclean Technology and Micromanufacturing

Nobelstrasse 12 70569 Stuttgart Germany Stuttgart, August 18, 2015

Place, date of first document issued

Stuttgart, February 13, 2017

Place, current date

i. A. Dr.-Ing. Udo Gommel, Project Manager Fraunhofer IPA

applies to the named product in its original state and is valid for a period of 5 years from the date the first document was issued. The document can be verified under

This document only

www.tested-device.com